Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Boltz-1: открытая модель для предсказания структуры биомолекулярных комплексов.

Boltz-1 - первая доступная модель с открытым исходным кодом, которая достигает точности AlphaFold3 в прогнозировании 3D-структур белков, РНК, ДНК и небольших молекул. Boltz-1 основана на архитектуре AlphaFold3, но включает ряд модификаций, повышающих точность и общую эффективность модели.

Архитектура состоит из модуля множественного выравнивания последовательностей (MSA), модуля PairFormer и диффузионной модели, работающую на двух уровнях разрешения: тяжелые атомы и токены. Токены представляют собой аминокислоты для белков, основания для РНК и ДНК, а также отдельные тяжелые атомы для других молекул.

Boltz-1 использует диффузионную модель, аналогичную AlphaFold3, но Boltz-1 использует жесткое выравнивание с помощью алгоритма Кабша после каждого шага процедуры вывода, чтобы гарантировать, что интерполированная структура более похожа на очищенную от шума выборку. Это уменьшает дисперсию потерь денойзинга и предотвращает переобучение модели.

Обучение модели проводилось на структурных данных из PDB, выпущенных до 30 сентября 2021 года, с разрешением не менее 9Å. Чтобы ускорить обучение, разработчики Boltz-1 применили алгоритм сопряжения MSA с использованием таксономической информации, унифицированный алгоритм кадрирования и алгоритм определения кармана связывания. Обучение модели заняло 68 тысяч шагов с размером пакета 128, что меньше, чем у AlphaFold3.

Оценка Boltz-1 была выполнена на датасете CASP15 и на наборе PDB, специально созданном разработчиками для тестирования.

Результаты показали, что Boltz-1 сопоставима по точности с Chai-1, закрытой репликацией AlphaFold3. Обе модели демонстрируют схожие показатели среднего LDDT и среднего TM-score.

Boltz-1 продемонстрировала преимущество в предсказании взаимодействия белок-лиганд на наборе данных CASP15.

Прикладная реализация инференса, доступная в репозитории на Github, может принимать на вход форматы:

🟢Fasta file, для большинства кейсов использования;
🟢Комплексная YAML-схема для более сложных случаев;
🟢Каталог с файлами для пакетной обработки.

Подробные инструкции для процесса прогнозирования и дообучения опубликованы в репозитории с кодом.

▶️Локальный инференс:

# Install boltz with PyPI
pip install boltz

# run inference
boltz predict input_path


📌Лицензирование: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #3D #Biomolecular
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pro_python_code/1606
Create:
Last Update:

🌟 Boltz-1: открытая модель для предсказания структуры биомолекулярных комплексов.

Boltz-1 - первая доступная модель с открытым исходным кодом, которая достигает точности AlphaFold3 в прогнозировании 3D-структур белков, РНК, ДНК и небольших молекул. Boltz-1 основана на архитектуре AlphaFold3, но включает ряд модификаций, повышающих точность и общую эффективность модели.

Архитектура состоит из модуля множественного выравнивания последовательностей (MSA), модуля PairFormer и диффузионной модели, работающую на двух уровнях разрешения: тяжелые атомы и токены. Токены представляют собой аминокислоты для белков, основания для РНК и ДНК, а также отдельные тяжелые атомы для других молекул.

Boltz-1 использует диффузионную модель, аналогичную AlphaFold3, но Boltz-1 использует жесткое выравнивание с помощью алгоритма Кабша после каждого шага процедуры вывода, чтобы гарантировать, что интерполированная структура более похожа на очищенную от шума выборку. Это уменьшает дисперсию потерь денойзинга и предотвращает переобучение модели.

Обучение модели проводилось на структурных данных из PDB, выпущенных до 30 сентября 2021 года, с разрешением не менее 9Å. Чтобы ускорить обучение, разработчики Boltz-1 применили алгоритм сопряжения MSA с использованием таксономической информации, унифицированный алгоритм кадрирования и алгоритм определения кармана связывания. Обучение модели заняло 68 тысяч шагов с размером пакета 128, что меньше, чем у AlphaFold3.

Оценка Boltz-1 была выполнена на датасете CASP15 и на наборе PDB, специально созданном разработчиками для тестирования.

Результаты показали, что Boltz-1 сопоставима по точности с Chai-1, закрытой репликацией AlphaFold3. Обе модели демонстрируют схожие показатели среднего LDDT и среднего TM-score.

Boltz-1 продемонстрировала преимущество в предсказании взаимодействия белок-лиганд на наборе данных CASP15.

Прикладная реализация инференса, доступная в репозитории на Github, может принимать на вход форматы:

🟢Fasta file, для большинства кейсов использования;
🟢Комплексная YAML-схема для более сложных случаев;
🟢Каталог с файлами для пакетной обработки.

Подробные инструкции для процесса прогнозирования и дообучения опубликованы в репозитории с кодом.

▶️Локальный инференс:

# Install boltz with PyPI
pip install boltz

# run inference
boltz predict input_path


📌Лицензирование: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #3D #Biomolecular

BY Python RU







Share with your friend now:
tg-me.com/pro_python_code/1606

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Python RU from sa


Telegram Python RU
FROM USA